If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x^2=153
We move all terms to the left:
x^2+4x^2-(153)=0
We add all the numbers together, and all the variables
5x^2-153=0
a = 5; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·5·(-153)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{85}}{2*5}=\frac{0-6\sqrt{85}}{10} =-\frac{6\sqrt{85}}{10} =-\frac{3\sqrt{85}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{85}}{2*5}=\frac{0+6\sqrt{85}}{10} =\frac{6\sqrt{85}}{10} =\frac{3\sqrt{85}}{5} $
| 8+m/14=9 | | n/2-7=-10 | | 14x+26=4x+306 | | 0.75(8b+4)-1=4b-14 | | 30+4x=64x | | 4(-6+a)=-36 | | 14x+26=4x=306 | | c+12/28=-5 | | 2(x+2)+x=5+4(x-2) | | m^2=4/169 | | -5+5v=10 | | -16u+-3u+-16=10 | | 5x+2(6x+11)=141 | | -2j+3j+-5j=18 | | 4(x-5)=x+2(x-3) | | a/4-8=-10 | | 3(5x+7)-6=30 | | –3/4x=24 | | y=4^2+4 | | z-18/6=-27 | | 4-(1+m)=40 | | -20=2(x+4) | | x/0.0287=90.2 | | 2(x+3)+3(x-5)=26 | | 4+b/8=3 | | x*0.0287=90.2 | | x*0.0.287=90.2 | | 0=3x^2-2x-2 | | 4x+5(3x-10)=83 | | -8(2+p)=-48 | | x=145000+.06x | | (n-5)=66 |